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\What are the health-hazard associations
in my data?

* Health outcome: ER visits due to
asthma among Alameda County,
California residents enrolled in
Medicaid and Kaiser Permanente;
geocoded by residence address

* Hazard meftric.: Annualized average
vehicle counts within a 300-meter
radius of subject’s residence




The approach | learned in grad school:

* f(ER) is a function of the ER visit rate, such as
the log or logit

* X, IS My exposure metric(s)

* X, are my important covariates such as race

or social class; these may not be of direct
interest but their inclusion can profoundly
influence the other parameters | calculate



The approach | learned in grad school:

* (.., are the parameters that I'm really
interested In — they represent the
associations between traffic and ER
Visits

« & are my residuals — in order for my
parameter estimates to be valid, these
must be evenly distributed around zero

and their mean must be constant
throughout Alameda County



Traditional approach

* Advantages:

1.
2.

Understood by all professional audiences

Common understanding about how
regression results behave under different
circumstances

Many accessible software packages to
choose from



Traditional approach

* Biggest disadvantage:

— My assumption about the constant mean

of the residuals (i.e. that all spatial
structure is accounted for by x,_ , and x,_,)

Is extremely tenuous)



L—sa,. ASthma ER-visits by children aged 0-17
\ Kaiser Permanente & Medi-Cal
Alameda County, 2001
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One solution

* Allows for the spatial structure of your
residuals in your regression model

* Any residual geographic variation not
accounted for by your parameters is
represented in the residual structure
(“residual variation”)



What can we use for Sp(x,y)?

* Several options, although more have
been developed for aggregated
(regional) rather than point data

* Could be a description of how the
covariance between neighboring points
decreases with distance (Kriging)

* Another option is locally weighted
estimation (loess) — the regression
(usually linear or quadratic) of the
outcome f(ER) as a function of the
coordinates across the space



Implications of including
non-parametric terms

* lo(x,y) will take on a different form depending
on what you leave out of your model; in

f(ER)= B, +lo(x, y)

lo(x,y) just depicts the spatial variation of f(ER)

* If lo(x,y) adapts to fit whatever is left out of the
model, will ., change depending on whether

we include our Covariates anymore?

(ER) ﬁO exp exp + COV cov + ZOI(‘)C:l y)

(ER) ﬁO exp exp + ZOI(‘)C:l y)



Enough talk already,
let's give it a shot!



Estimating lo(x,y)

* At any given point, the nearest
neighbors are included in the locally
weighted estimation

* The fraction of all the data included as
nearest neighbors is the span, which
must be specified

* A small span gives a "bumpy” loess
function, whereas a larger one will be
smoother

* Still working out the bugs...
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Relative risk for ER visits, children 0-4
span=0.15

RR
<0.30
0.30-0
044-0

67 -1

1

N o.
N .
. o
1.0
I s
I
[ K

14



Relative risk for ER visits, children 0-4
span=0.30
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Relative risk for ER visits, children 0-4
span=0.60
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How much smoothing is the “right
amount?”

* This is really a question of how well the curve
can predict the value of any given point

* Predictive power is maximized when Akaike’s
nformation Criterion (AIC) is minimized

* Is this the best approach for all environmental
epidemiology questions? All community
stakeholder communications? 17




Finding the minimum AIC can be a
chore!

* Large samples and/or large span

values require heavy computing
resources

* A random subset of the total sample
may have a different span value
associated with the AIC minimum
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Optimal span sizes for asthma ER

visit data
Available | Sample | Span with
Age group sample used AlC,,,
0-4 years 44,526 (all) 0.078
5-17 years 78,433 25,000 1.000
18-44 years 197,856 25,000 0.077
45-64 years 111,235 25,000 0.141
65+ years 64,820 25,000 1.000
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Does this change anything?

* Compared RR for ER visits among quartiles of
exposure to our traffic metric (reference=1s!
quartile)

* Models:

— Traffic only
— Traffic + median family income of census tract +

Medicaid status
— Traffic with loess smooth term

— Traffic + median family income of census tract +
Medicaid status with loess smooth term




Results

* When smooth term included, the
presence or absence of covariates In
the model becomes mostly irrelevant
(for these data!)

* |Inclusion of the smooth term may make
the pollution parameters...

— More like the crude model
— More like the adjusted model
— Similar to neither model
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ER visits: Ages 0-4
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ER visits: Ages 5-17

Structured residuals

Traditional residuals
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ER visits: Ages 18-44

Traditional residuals Structured residuals
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ER visits: Ages 45-64

Traditional residuals Structured residuals
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ER visits: Ages 65+

Traditional residuals

Structured residuals
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. essons learned

* Working with spatially structured residuals is
not too difficult

* Big step is selection of span value — need to
explore appropriateness of AIC . criterion for

Tracking purposes ’

* We need much more experience to
understand:

— The relationship between sample size and the span
value for AIC .

min

— How and when to graphically represent represent
smoothed residuals

— Under what circumstances it's ok to leave
covariates out of our regression models
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. essons learned

* Often in Tracking we lack satisfactory covariate
measures — if these can become irrelevant, this
could be a big advantage

* Ability to visualize the residuals as maps may
be a great tool on its own

— Potentially objective criterion to determine
appropriate resolution for maps

— Ability to control for covariates to alter and view the
resulting residual structure
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Thank you!

The CDC Environmental Public Health

Tracking Program

Lance A. Waller, PhD*

*For invaluable comments and advice; any errors
and misconceptions are my fault, not his!

29



